Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Aging ; 3(12): 1544-1560, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37957359

RESUMEN

Late-life-initiated dietary interventions show limited efficacy in extending longevity or mitigating frailty, yet the underlying causes remain unclear. Here we studied the age-related fasting response of the short-lived killifish Nothobranchius furzeri. Transcriptomic analysis uncovered the existence of a fasting-like transcriptional program in the adipose tissue of old fish that overrides the feeding response, setting the tissue in persistent metabolic quiescence. The fasting-refeeding cycle triggers an inverse oscillatory expression of genes encoding the AMP-activated protein kinase (AMPK) regulatory subunits Prkag1 (γ1) and Prkag2 (γ2) in young individuals. Aging blunts such regulation, resulting in reduced Prkag1 expression. Transgenic fish with sustained AMPKγ1 countered the fasting-like transcriptional program, exhibiting a more youthful feeding and fasting response in older age, improved metabolic health and longevity. Accordingly, Prkag1 expression declines with age in human tissues and is associated with multimorbidity and multidimensional frailty risk. Thus, selective activation of AMPKγ1 prevents metabolic quiescence and preserves healthy aging in vertebrates, offering potential avenues for intervention.


Asunto(s)
Fragilidad , Longevidad , Animales , Humanos , Longevidad/genética , Proteínas Quinasas Activadas por AMP/genética , Envejecimiento/genética , Peces/metabolismo
2.
Cold Spring Harb Protoc ; 2023(8): 107745, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36828575

RESUMEN

Blood withdrawal is a common procedure performed on laboratory animals to monitor key processes and indicators of fish health and physiology, such as hematopoiesis, hemostasis, and lipid and glucose metabolism. Moreover, the ability to extract blood with minimal invasiveness and without sacrificing animals enables repeated sampling, allowing both longitudinal studies of individual animals, as well as reducing the number of experimental animals needed in a study. The African turquoise killifish is an emerging animal model that is progressively being adopted worldwide for aging studies because of its naturally short life span. However, because of the small body size of this species, nonlethal blood collection is a challenging procedure. Here we present a detailed protocol enabling repeated blood sampling from the same individual fish. This method, if correctly executed, is minimally invasive and does not cause any lasting damage. The protocol has been tested on animals spanning from 6 to 24 wk of age and the amount of blood that could be extracted varied from 0.5 to 8 µL, greatly depending on specimen age, sex, and size. This volume is sufficient to perform analyses such as blood glucose measurement, blood cell counts, or histological stains on blood smears.


Asunto(s)
Ciprinodontiformes , Fundulidae , Animales , Fundulidae/fisiología , Ciprinodontiformes/fisiología , Envejecimiento , Longevidad
3.
Cold Spring Harb Protoc ; 2023(8): 107884, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36828576

RESUMEN

Aging is associated with an increase in body fat mass and a concomitant decrease in lean mass and bone density in mammals. Body adiposity can also be redistributed with age, resulting in abdominal fat accumulation and subcutaneous fat reduction. In addition, specific variation in fat distribution is considered to be a risk factor for a number of age-related metabolic disorders. Micro computed tomography (micro-CT) is a nondestructive high-resolution imaging method that uses planar X-ray images captured at various angles around a sample of interest to yield a three-dimensional array of radiodensity values, which can then be used to computationally extract the adipose volume in situ using its innate contrast properties. This method was successfully used to study adipose tissue dynamics in rodents and more recently in zebrafish. The naturally short-lived African turquoise killifish is an emerging model organism to study the biology of aging. Like mammals, killifish also have different fat deposits (visceral and subcutaneous), making them a suitable model to study age-related changes in fat mass and distribution. However, procedures allowing precise quantification of fat content and distribution are missing in this species. Here, we provide an optimized protocol to measure and quantify fat distribution in turquoise killifish by micro-CT scan analysis and show the applicability of the method in young and old animals of both sexes.


Asunto(s)
Fundulidae , Masculino , Animales , Femenino , Microtomografía por Rayos X/métodos , Pez Cebra , Tejido Adiposo/diagnóstico por imagen , Mamíferos
4.
Anal Bioanal Chem ; 413(26): 6457-6468, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34476522

RESUMEN

Cyclic dinucleotides (CDNs) are key secondary messenger molecules produced by cyclic dinucleotide synthases that trigger various cellular signaling cascades from bacteria to vertebrates. In mammals, cyclic GMP-AMP synthase (cGAS) has been shown to bind to intracellular DNA and catalyze the production of the dinucleotide 2'3' cGAMP, which signals downstream effectors to regulate immune function, interferon signaling, and the antiviral response. Despite the importance of CDNs, sensitive and accurate methods to measure their levels in vivo are lacking. Here, we report a novel LC-MS/MS method to quantify CDNs in vivo. We characterized the mass spectrometric behavior of four different biologically relevant CDNs (c-di-AMP, c-di-GMP, 3'3' cGAMP, 2'3' cGAMP) and provided a means of visually representing fragmentation resulting from collision-induced dissociation at different energies using collision energy breakdown graphs. We then validated the method and quantified CDNs in two in vivo systems, the bacteria Escherichia coli OP50 and the killifish Nothobranchius furzeri. We found that optimization of LC-MS/MS parameters is crucial to sensitivity and accuracy. These technical advances should help illuminate physiological and pathological roles of these CDNs in in vivo settings. Graphical abstract.


Asunto(s)
GMP Cíclico/análogos & derivados , Fosfatos de Dinucleósidos/análisis , Nucleótidos Cíclicos/análisis , Animales , Cromatografía Liquida , GMP Cíclico/análisis , Escherichia coli/química , Fundulidae/metabolismo , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...